05 Homography

    在FLANN特徵上,還可以進一步利用Homography映射找出已知物體。
    就是利用findHomography函數,利用匹配的關鍵點找出相應的變換,再利用perspectiveTransform函數映射點群。

    #include <stdio.h>
    #include <iostream>
    #include <opencv2/core/core.hpp>
    #include <opencv2/features2d/features2d.hpp>
    #include <opencv2/nonfree/features2d.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/calib3d/calib3d.hpp>
    #include <opencv2/nonfree/nonfree.hpp>
    
    
    using namespace cv;
    
    void readme();
    
    /** @function main */
    int main( int argc, char** argv )
    {
       
        
        Mat img_1 = imread( "/Users/powenko/Desktop/doughnut.png", CV_LOAD_IMAGE_GRAYSCALE );
        Mat img_2 = imread( "/Users/powenko/Desktop/doughnuts.png", CV_LOAD_IMAGE_GRAYSCALE );
        
        
        Mat img_object =img_1; // imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
        Mat img_scene = img_2; //imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
        
        if( !img_object.data || !img_scene.data )
        { std::cout<< " --(!) Error reading images " << std::endl; return -1; }
        
        //-- Step 1: Detect the keypoints using SURF Detector
        int minHessian = 400;
        
        SurfFeatureDetector detector( minHessian );
        
        std::vector<KeyPoint> keypoints_object, keypoints_scene;
        
        detector.detect( img_object, keypoints_object );
        detector.detect( img_scene, keypoints_scene );
        
        //-- Step 2: Calculate descriptors (feature vectors)
        SurfDescriptorExtractor extractor;
        
        Mat descriptors_object, descriptors_scene;
        
        extractor.compute( img_object, keypoints_object, descriptors_object );
        extractor.compute( img_scene, keypoints_scene, descriptors_scene );
        
        //-- Step 3: Matching descriptor vectors using FLANN matcher
        FlannBasedMatcher matcher;
        std::vector< DMatch > matches;
        matcher.match( descriptors_object, descriptors_scene, matches );
        
        double max_dist = 0; double min_dist = 100;
        
        //-- Quick calculation of max and min distances between keypoints
        for( int i = 0; i < descriptors_object.rows; i++ )
        { double dist = matches[i].distance;
            if( dist < min_dist ) min_dist = dist;
            if( dist > max_dist ) max_dist = dist;
        }
        
        printf("-- Max dist : %f \n", max_dist );
        printf("-- Min dist : %f \n", min_dist );
        
        //-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
        std::vector< DMatch > good_matches;
        
        for( int i = 0; i < descriptors_object.rows; i++ )
        { if( matches[i].distance < 3*min_dist )
        { good_matches.push_back( matches[i]); }
        }
        
        Mat img_matches;
        drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
                    good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
                    vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
        
        //-- Localize the object
        std::vector<Point2f> obj;
        std::vector<Point2f> scene;
        
        for( int i = 0; i < good_matches.size(); i++ )
        {
            //-- Get the keypoints from the good matches
            obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
            scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
        }
        
        Mat H = findHomography( obj, scene, CV_RANSAC );
        
        //-- Get the corners from the image_1 ( the object to be "detected" )
        std::vector<Point2f> obj_corners(4);
        obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols, 0 );
        obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows );
        std::vector<Point2f> scene_corners(4);
        
        perspectiveTransform( obj_corners, scene_corners, H);
        
        //-- Draw lines between the corners (the mapped object in the scene - image_2 )
        line( img_matches, scene_corners[0] + Point2f( img_object.cols, 0), scene_corners[1] + Point2f( img_object.cols, 0), Scalar(0, 255, 0), 4 );
        line( img_matches, scene_corners[1] + Point2f( img_object.cols, 0), scene_corners[2] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
        line( img_matches, scene_corners[2] + Point2f( img_object.cols, 0), scene_corners[3] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
        line( img_matches, scene_corners[3] + Point2f( img_object.cols, 0), scene_corners[0] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
        
        //-- Show detected matches
        imshow( "Good Matches & Object detection", img_matches );
        
        waitKey(0);
        return 0;
    }
    
    /** @function readme */
    void readme()
    { std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }
    

    screen-shot-2016-12-02-at-8-45-54-pm