# 建立模型
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(320, activation='tanh', input_shape=[x_train.shape[1]]))
model.add(tf.keras.layers.Dense(640, activation='tanh'))
model.add(tf.keras.layers.Dense(640, activation='tanh'))
model.add(tf.keras.layers.Dense(1))
learning_rate = 0.0001
opt1 = tf.keras.optimizers.Nadam(lr=learning_rate)
model.compile(loss='mse', optimizer=opt1, metrics=['mae'])
checkpoint = tf.keras.callbacks.ModelCheckpoint("model2.h5", monitor='loss', verbose=1,
save_best_only=True, mode='auto', period=1)
history = model.fit(x_train, y_train,
epochs=4000,
callbacks=[checkpoint],
batch_size=100)