1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | t=2 category=2 dim=x_train.shape[1] y_train2=tf.keras.utils.to_categorical(y_train, num_classes=(category)) y_test2=tf.keras.utils.to_categorical(y_test, num_classes=(category)) # 建立模型 model = tf.keras.models.Sequential() model.add(tf.keras.layers.Dense(units=200, activation=tf.nn.relu, input_dim=dim)) model.add(tf.keras.layers.Dense(units=40*t, activation=tf.nn.relu )) model.add(tf.keras.layers.Dense(units=80*t, activation=tf.nn.relu )) model.add(tf.keras.layers.Dense(units=100*t, activation=tf.nn.relu )) model.add(tf.keras.layers.Dense(units=category, activation=tf.nn.softmax )) model.compile(optimizer='adam', loss=tf.keras.losses.categorical_crossentropy, metrics=['accuracy']) model.fit(x_train, y_train2, epochs=300*t, batch_size=64) #測試 model.summary() score = model.evaluate(x_test, y_test2, batch_size=64) print("score:",score) predict2 = model.predict_classes(x_test) print("predict_classes:",predict2) print("y_test",y_test[:]) |